Las plantas geotérmicas aprovechan el calor generado por la tierra. A varios kilómetros de profundidad en tierras volcánicas los geólogos han encontrado cámaras magmáticas, con roca a varios cientos de grados centígrados. Además en algunos lugares se dan otras condiciones especiales como son capas rocosas porosas y capas rocosas impermeables que atrapan agua y vapor de agua a altas temperaturas y presión y que impiden que éstos salgan a la superficie. Si se combinan estas condiciones se produce un yacimiento geotérmico.
Una vez que se dispone de pozos de explotación se extrae el fluido geotérmico que consiste en una combinación de vapor, agua y otros materiales. Éste se conduce hacia la planta geotérmica donde debe ser tratado. Primero pasa por un separador de donde sale el vapor y la salmuera y líquidos de condensación y arrastre, que es una combinación de agua y materiales. Esta última se envía a pozos de reinyección para que no se agote el yacimiento geotérmico. El vapor continúa hacia las turbinas que con su rotación mueve un generador que produce energía eléctrica. Después de la turbina el vapor es condensado y enfriado en torres y lagunas.
jueves, 22 de abril de 2010
MAREOMOTRIZ
La energía mareomotriz es la que se obtiene aprovechando la mareas, es decir, la diferencia de altura media de los mares según la posición relativa de la Tierra y la Luna, y que resulta de la atracción gravitatoria de esta última y del Sol sobre las masas de agua de los mares. Esta diferencia de alturas puede aprovecharse interponiendo partes móviles al movimiento natural de ascenso o descenso de las aguas, junto con mecanismos de canalización y depósito, para obtener movimiento en un eje.
Mediante su acoplamiento a un alternador se puede utilizar el sistema para la generación de electricidad, transformando así la energía mareomotriz en energía eléctrica, una forma energética más útil y aprovechable. Es un tipo de energía renovable limpia.
La energía mareomotriz tiene la cualidad de ser renovable, en tanto que la fuente de energía primaria no se agota por su explotación, y es limpia, ya que en la transformación energética no se producen subproductos contaminantes gaseosos, líquidos o sólidos. Sin embargo, la relación entre la cantidad de energía que se puede obtener con los medios actuales y el coste económico y ambiental de instalar los dispositivos para su proceso han impedido una proliferación notable de este tipo de energía. Otras formas de extraer energía del mar son: las olas, la energía undimotriz; de la diferencia de temperatura entre la superficie y las aguas profundas del océano, el gradiente térmico oceánico; de la salinidad; de las corrientes submarinas o la eólica marina
Mediante su acoplamiento a un alternador se puede utilizar el sistema para la generación de electricidad, transformando así la energía mareomotriz en energía eléctrica, una forma energética más útil y aprovechable. Es un tipo de energía renovable limpia.
La energía mareomotriz tiene la cualidad de ser renovable, en tanto que la fuente de energía primaria no se agota por su explotación, y es limpia, ya que en la transformación energética no se producen subproductos contaminantes gaseosos, líquidos o sólidos. Sin embargo, la relación entre la cantidad de energía que se puede obtener con los medios actuales y el coste económico y ambiental de instalar los dispositivos para su proceso han impedido una proliferación notable de este tipo de energía. Otras formas de extraer energía del mar son: las olas, la energía undimotriz; de la diferencia de temperatura entre la superficie y las aguas profundas del océano, el gradiente térmico oceánico; de la salinidad; de las corrientes submarinas o la eólica marina
EOLICA
Energía eólica es la energía obtenida del viento, es decir, la energía cinética generada por efecto de las corrientes de aire, y que es transformada en otras formas útiles para las actividades humanas.
El término eólico viene del latín Aeolicus, perteneciente o relativo a Eolo, dios de los vientos en la mitología griega. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas.
En la actualidad, la energía eólica es utilizada principalmente para producir energía eléctrica mediante aerogeneradores. A finales de 2007, la capacidad mundial de los generadores eólicos fue de 94.1 gigavatios.1 Mientras la eólica genera alrededor del 1% del consumo de electricidad mundial,2 representa alrededor del 19% de la producción eléctrica en Dinamarca, 9% en España y Portugal, y un 6% en Alemania e Irlanda (Datos del 2007). En el año 2008 el porcentaje aportado por la energía eólica en España aumentó hasta el 11%.3 4
La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar termoeléctricas a base de combustibles fósiles, lo que la convierte en un tipo de energía verde. Sin embargo, el principal inconveniente es su intermitencia.
El término eólico viene del latín Aeolicus, perteneciente o relativo a Eolo, dios de los vientos en la mitología griega. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas.
En la actualidad, la energía eólica es utilizada principalmente para producir energía eléctrica mediante aerogeneradores. A finales de 2007, la capacidad mundial de los generadores eólicos fue de 94.1 gigavatios.1 Mientras la eólica genera alrededor del 1% del consumo de electricidad mundial,2 representa alrededor del 19% de la producción eléctrica en Dinamarca, 9% en España y Portugal, y un 6% en Alemania e Irlanda (Datos del 2007). En el año 2008 el porcentaje aportado por la energía eólica en España aumentó hasta el 11%.3 4
La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar termoeléctricas a base de combustibles fósiles, lo que la convierte en un tipo de energía verde. Sin embargo, el principal inconveniente es su intermitencia.
BIOMASA
Biomasa, según el Diccionario de la Real Academia Española, tiene dos acepciones:
1. f. Biol. Materia total de los seres que viven en un lugar determinado, expresada en peso por unidad de área o de volumen.
2. f. Biol. Materia orgánica originada en un proceso biológico, espontáneo o provocado, utilizable como fuente de energía.1
La primera acepción se utiliza habitualmente en Ecología. La segunda acepción, más restringida, se refiere a la biomasa 'útil' en términos energéticos: las plantas transforman la energía radiante del Sol en energía química a través de la fotosíntesis, y parte de esa energía química queda almacenada en forma de materia orgánica; la energía química de la biomasa puede recuperarse quemándola directamente o transformándola en combustible (ésta es la única acepción recogida en la wikipedia inglesa en junio de 2008).
Un equívoco muy común es confundir 'materia orgánica' con 'materia viva', pero basta considerar un árbol, en el que la mayor parte de la masa está muerta, para deshacer el equívoco; de hecho, es precisamente la biomasa 'muerta' la que en el árbol resulta más útil en términos energéticos. Se trata de un debate importante en ecología, como muestra esta apreciación de Margalef (1980:12):
Todo ecólogo empeñado en estimar la biomasa de un bosque se enfrenta, tarde o temprano, con un problema. ¿Deberá incluir también la madera, y quizás incluso la hojarasca y el mantillo? Una gran proporción de la madera no se puede calificar de materia viva, pero es importante como elemento de estructura y de transporte, y la materia orgánica del suelo es también un factor de estructura.
Otro equívoco muy común es utilizar 'biomasa' como sinónimo de la energía útil que puede extraerse de ella, lo que genera bastante confusión debido a que la relación entre la energía útil y la biomasa es muy variable y depende de innumerables factores. Para empezar, la energía útil puede extraerse por combustión directa de biomasa (madera, excrementos animales, etc), pero también de la combustión de combustibles obtenidos de ella mediante transformaciones físicas o químicas (gas metano de los residuos orgánicos, por ejemplo), procesos en los que 'siempre' se pierde algo de la energía útil original. Además, la biomasa puede ser útil directamente como materia orgánica en forma de abono y tratamiento de suelos (por ejemplo, el uso de estiércol o de coberturas vegetales). Y por supuesto no puede olvidarse su utilidad más común: servir de alimento a muy diversos organismos, la humanidad incluida (véase 'cadena trófica').
La biomasa de la madera, residuos agrícolas y estiércol continúa siendo una fuente principal de energía y materia útiles en países poco industrializados.
En la primera acepción, es la masa total de toda la materia que forma un organismo, una población o un ecosistema y tiende a mantenerse más o menos constante. Su medida es difícil en el caso de los ecosistemas. Por lo general, se da en unidades de masa por cada unidad de superficie. Es frecuente medir la materia seca (excluyendo el agua). En la pluviselva del Amazonas puede haber una biomasa de plantas de 1.100 toneladas por hectárea de tierra.
Pero mucho más frecuente es el interés en la 'producción neta' de un ecosistema, es decir, la nueva materia orgánica generada en la unidad de superficie a lo largo de una unidad tiempo, por ejemplo, en una hectárea y a lo largo de un año. En teoría, en un ecosistema que ha alcanzado el clímax la producción neta es nula o muy pequeña: el ecosistema simplemente renueva su biomasa sin crecimiento a la vez que la biomasa total alcanza su valor máximo. Por ello la biomasa es uno de los atributos más relevantes para caracterizar el estado de un ecosistema o el proceso de sucesión ecológica en un territorio (véase, por ejemplo, Odum, 1969).
En términos energéticos, se puede utilizar directamente, como es el caso de la leña, o indirectamente en forma de biocombustibles (biodiésel, bioalcohol, biogás, bloque sólido combustible). Pero al igual que no consideramos al vino como biomasa, debe evitarse denominar como biomasa a los biocombustibles (nótese que el etanol puede obtenerse del vino por destilación): 'biomasa' debe reservarse para denominar la materia prima empleada en la fabricación de biocombustibles.
La biomasa podría proporcionar energías sustitutivas a los combustibles fósiles, gracias a biocombustibles líquidos (como el biodiésel o el bioetanol), gaseosos (gas metano) o sólidos (leña), pero todo depende de que no se emplee más biomasa que la producción neta del ecosistema explotado, de que no se incurra en otros consumos de combustibles en los procesos de transformación, y de que la utilidad energética sea la más oportuna frente a otros usos posibles (como abono y alimento, véase la discusión que para España plantea Carpintero, 2006).
Actualmente (2009), la biomasa proporciona combustibles complementarios a los fósiles, ayudando al crecimiento del consumo mundial (y de sus correspondientes impactos ambientales), sobre todo en el sector transporte (Estevan, 2008).
1. f. Biol. Materia total de los seres que viven en un lugar determinado, expresada en peso por unidad de área o de volumen.
2. f. Biol. Materia orgánica originada en un proceso biológico, espontáneo o provocado, utilizable como fuente de energía.1
La primera acepción se utiliza habitualmente en Ecología. La segunda acepción, más restringida, se refiere a la biomasa 'útil' en términos energéticos: las plantas transforman la energía radiante del Sol en energía química a través de la fotosíntesis, y parte de esa energía química queda almacenada en forma de materia orgánica; la energía química de la biomasa puede recuperarse quemándola directamente o transformándola en combustible (ésta es la única acepción recogida en la wikipedia inglesa en junio de 2008).
Un equívoco muy común es confundir 'materia orgánica' con 'materia viva', pero basta considerar un árbol, en el que la mayor parte de la masa está muerta, para deshacer el equívoco; de hecho, es precisamente la biomasa 'muerta' la que en el árbol resulta más útil en términos energéticos. Se trata de un debate importante en ecología, como muestra esta apreciación de Margalef (1980:12):
Todo ecólogo empeñado en estimar la biomasa de un bosque se enfrenta, tarde o temprano, con un problema. ¿Deberá incluir también la madera, y quizás incluso la hojarasca y el mantillo? Una gran proporción de la madera no se puede calificar de materia viva, pero es importante como elemento de estructura y de transporte, y la materia orgánica del suelo es también un factor de estructura.
Otro equívoco muy común es utilizar 'biomasa' como sinónimo de la energía útil que puede extraerse de ella, lo que genera bastante confusión debido a que la relación entre la energía útil y la biomasa es muy variable y depende de innumerables factores. Para empezar, la energía útil puede extraerse por combustión directa de biomasa (madera, excrementos animales, etc), pero también de la combustión de combustibles obtenidos de ella mediante transformaciones físicas o químicas (gas metano de los residuos orgánicos, por ejemplo), procesos en los que 'siempre' se pierde algo de la energía útil original. Además, la biomasa puede ser útil directamente como materia orgánica en forma de abono y tratamiento de suelos (por ejemplo, el uso de estiércol o de coberturas vegetales). Y por supuesto no puede olvidarse su utilidad más común: servir de alimento a muy diversos organismos, la humanidad incluida (véase 'cadena trófica').
La biomasa de la madera, residuos agrícolas y estiércol continúa siendo una fuente principal de energía y materia útiles en países poco industrializados.
En la primera acepción, es la masa total de toda la materia que forma un organismo, una población o un ecosistema y tiende a mantenerse más o menos constante. Su medida es difícil en el caso de los ecosistemas. Por lo general, se da en unidades de masa por cada unidad de superficie. Es frecuente medir la materia seca (excluyendo el agua). En la pluviselva del Amazonas puede haber una biomasa de plantas de 1.100 toneladas por hectárea de tierra.
Pero mucho más frecuente es el interés en la 'producción neta' de un ecosistema, es decir, la nueva materia orgánica generada en la unidad de superficie a lo largo de una unidad tiempo, por ejemplo, en una hectárea y a lo largo de un año. En teoría, en un ecosistema que ha alcanzado el clímax la producción neta es nula o muy pequeña: el ecosistema simplemente renueva su biomasa sin crecimiento a la vez que la biomasa total alcanza su valor máximo. Por ello la biomasa es uno de los atributos más relevantes para caracterizar el estado de un ecosistema o el proceso de sucesión ecológica en un territorio (véase, por ejemplo, Odum, 1969).
En términos energéticos, se puede utilizar directamente, como es el caso de la leña, o indirectamente en forma de biocombustibles (biodiésel, bioalcohol, biogás, bloque sólido combustible). Pero al igual que no consideramos al vino como biomasa, debe evitarse denominar como biomasa a los biocombustibles (nótese que el etanol puede obtenerse del vino por destilación): 'biomasa' debe reservarse para denominar la materia prima empleada en la fabricación de biocombustibles.
La biomasa podría proporcionar energías sustitutivas a los combustibles fósiles, gracias a biocombustibles líquidos (como el biodiésel o el bioetanol), gaseosos (gas metano) o sólidos (leña), pero todo depende de que no se emplee más biomasa que la producción neta del ecosistema explotado, de que no se incurra en otros consumos de combustibles en los procesos de transformación, y de que la utilidad energética sea la más oportuna frente a otros usos posibles (como abono y alimento, véase la discusión que para España plantea Carpintero, 2006).
Actualmente (2009), la biomasa proporciona combustibles complementarios a los fósiles, ayudando al crecimiento del consumo mundial (y de sus correspondientes impactos ambientales), sobre todo en el sector transporte (Estevan, 2008).
SOLAR
La energía solar es la energía obtenida mediante la captación de la luz y el calor emitidos por el Sol.
La radiación solar que alcanza la Tierra puede aprovecharse por medio del calor que produce a través de la absorción de la radiación, por ejemplo en dispositivos ópticos o de otro tipo. Es una de las llamadas energías renovables, particularmente del grupo no contaminante, conocido como energía limpia o energía verde. Si bien, al final de su vida útil, los paneles fotovoltaicos pueden suponer un residuo contaminante difícilmente reciclable al día de hoy.
La potencia de la radiación varía según el momento del día, las condiciones atmosféricas que la amortiguan y la latitud. Se puede asumir que en buenas condiciones de irradiación el valor es de aproximadamente 1000 W/m² en la superficie terrestre. A esta potencia se la conoce como irradiancia.
La radiación es aprovechable en sus componentes directa y difusa, o en la suma de ambas. La radiación directa es la que llega directamente del foco solar, sin reflexiones o refracciones intermedias. La difusa es la emitida por la bóveda celeste diurna gracias a los múltiples fenómenos de reflexión y refracción solar en la atmósfera, en las nubes y el resto de elementos atmosféricos y terrestres. La radiación directa puede reflejarse y concentrarse para su utilización, mientras que no es posible concentrar la luz difusa que proviene de todas las direcciones.
La irradiancia directa normal (o perpendicular a los rayos solares) fuera de la atmósfera, recibe el nombre de constante solar y tiene un valor medio de 1354 W/m² (que corresponde a un valor máximo en el perihelio de 1395 W/m² y un valor mínimo en el afelio de 1308 W/m²).
Según informes de Greenpeace, la energía solar fotovoltaica podría suministrar electricidad a dos tercios de la población mundial en 2030.1
La radiación solar que alcanza la Tierra puede aprovecharse por medio del calor que produce a través de la absorción de la radiación, por ejemplo en dispositivos ópticos o de otro tipo. Es una de las llamadas energías renovables, particularmente del grupo no contaminante, conocido como energía limpia o energía verde. Si bien, al final de su vida útil, los paneles fotovoltaicos pueden suponer un residuo contaminante difícilmente reciclable al día de hoy.
La potencia de la radiación varía según el momento del día, las condiciones atmosféricas que la amortiguan y la latitud. Se puede asumir que en buenas condiciones de irradiación el valor es de aproximadamente 1000 W/m² en la superficie terrestre. A esta potencia se la conoce como irradiancia.
La radiación es aprovechable en sus componentes directa y difusa, o en la suma de ambas. La radiación directa es la que llega directamente del foco solar, sin reflexiones o refracciones intermedias. La difusa es la emitida por la bóveda celeste diurna gracias a los múltiples fenómenos de reflexión y refracción solar en la atmósfera, en las nubes y el resto de elementos atmosféricos y terrestres. La radiación directa puede reflejarse y concentrarse para su utilización, mientras que no es posible concentrar la luz difusa que proviene de todas las direcciones.
La irradiancia directa normal (o perpendicular a los rayos solares) fuera de la atmósfera, recibe el nombre de constante solar y tiene un valor medio de 1354 W/m² (que corresponde a un valor máximo en el perihelio de 1395 W/m² y un valor mínimo en el afelio de 1308 W/m²).
Según informes de Greenpeace, la energía solar fotovoltaica podría suministrar electricidad a dos tercios de la población mundial en 2030.1
HIDRAULICA
Se denomina energía hidráulica o energía hídrica a aquella que se obtiene del aprovechamiento de las energías cinética y potencial de la corriente de ríos, saltos de agua o mareas. Es un tipo de energía verde cuando su impacto ambiental es mínimo y usa la fuerza hídrica sin represarla, en caso contrario es considerada sólo una forma de energía renovable.
Inconvenientes
Son varios, la constitución del embalse supone la inundación de importantes extensiones de terreno así como el abandono del pueblo.
Destrucción de la naturaleza
Plantas hidráulicas pueden ser disruptivas a los ecosistemas acuáticos. Por ejemplo, estudios han mostrado que las presas en las costas de Norteamérica han reducido las poblaciones de trucha septentrional común que necesitan migrar a ciertos locales para reproducirse. Hay bastantes estudios buscando soluciones a este tipo de problema. Un ejemplo es la invención de un tipo de escalera para los peces.
Pero la electricidad hidráulica cambia los ecosistemas en el río abajo también. El agua que sale de las turbinas típicamente maltrechas no tiene mucho sedimento. Esto puede resultar en la destrucción de los costados de los ríos. Como las turbinas se abren y cierran muchas veces, la cantidad de agua que hay en el río cambia muchas veces también. Estos efectos combinados pueden alterar los ecosistemas dramáticamente.
Inconvenientes
Son varios, la constitución del embalse supone la inundación de importantes extensiones de terreno así como el abandono del pueblo.
Destrucción de la naturaleza
Plantas hidráulicas pueden ser disruptivas a los ecosistemas acuáticos. Por ejemplo, estudios han mostrado que las presas en las costas de Norteamérica han reducido las poblaciones de trucha septentrional común que necesitan migrar a ciertos locales para reproducirse. Hay bastantes estudios buscando soluciones a este tipo de problema. Un ejemplo es la invención de un tipo de escalera para los peces.
Pero la electricidad hidráulica cambia los ecosistemas en el río abajo también. El agua que sale de las turbinas típicamente maltrechas no tiene mucho sedimento. Esto puede resultar en la destrucción de los costados de los ríos. Como las turbinas se abren y cierran muchas veces, la cantidad de agua que hay en el río cambia muchas veces también. Estos efectos combinados pueden alterar los ecosistemas dramáticamente.
Suscribirse a:
Entradas (Atom)